High-efficiency polymer solar cells with small photon energy loss

نویسندگان

  • Kazuaki Kawashima
  • Yasunari Tamai
  • Hideo Ohkita
  • Itaru Osaka
  • Kazuo Takimiya
چکیده

A crucial issue facing polymer-based solar cells is how to manage the energetics of the polymer/fullerene blends to maximize short-circuit current density and open-circuit voltage at the same time and thus the power conversion efficiency. Here we demonstrate that the use of a naphthobisoxadiazole-based polymer with a narrow bandgap of 1.52 eV leads to high open-circuit voltages of approximately 1 V and high-power conversion efficiencies of ∼9% in solar cells, resulting in photon energy loss as small as ∼0.5 eV, which is much smaller than that of typical polymer systems (0.7-1.0 eV). This is ascribed to the high external quantum efficiency for the systems with a very small energy offset for charge separation. These unconventional features of the present polymer system will inspire the field of polymer-based solar cells towards further improvement of power conversion efficiencies with both high short-circuit current density and open-circuit voltage.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhancing the photocurrent in diketopyrrolopyrrole-based polymer solar cells via energy level control.

A series of diketopyrrolopyrrole (DPP)-based small band gap polymers has been designed and synthesized by Suzuki or Stille polymerization for use in polymer solar cells. The new polymers contain extended aromatic π-conjugated segments alternating with the DPP units and are designed to increase the free energy for charge generation to overcome current limitations in photocurrent generation of DP...

متن کامل

Energy Level Tuning of Poly(phenylene‐alt‐dithienobenzothiadiazole)s for Low Photon Energy Loss Solar Cells

Six poly(phenylene-alt-dithienobenzothiadiazole)-based polymers have been synthesized for application in polymer-fullerene solar cells. Hydrogen, fluorine, or nitrile substitution on benzo-thiadiazole and alkoxy or ester substitution on the phenylene moiety are investigated to reduce the energy loss per converted photon. Power conversion efficiencies (PCEs) up to 6.6% have been obtained. The be...

متن کامل

Novel Organic and Polymeric Materials for Solar Energy Conversions ¬リニ

Organic or ‘plastic’ solar cells are attractive for solar photoelectric energy conversion applications where low cost (such as large area), lightweight, and flexible shape are desired. The photoelectric power conversion efficiencies of currently reported organic/polymeric photovoltaic materials are still relatively low (typically less than 10% under AM 1.5 and one Sun intensity), and the three ...

متن کامل

A polymer tandem solar cell with 10.6% power conversion efficiency

An effective way to improve polymer solar cell efficiency is to use a tandem structure, as a broader part of the spectrum of solar radiation is used and the thermalization loss of photon energy is minimized. In the past, the lack of high-performance low-bandgap polymers was the major limiting factor for achieving high-performance tandem solar cell. Here we report the development of a high-perfo...

متن کامل

Transient photocurrent measurements on Polymer Solar Cells

Organic solar cells made of polymers are an attractive alternative to the conventional solar cells which are commercially used today. The polymer solar cell is cheap to produce, due to the high absorption coefficients which limits the needed thickness of the material and due to the simple manufacturing process, which doesn’t demand high temperatures. However, the efficiencies of polymer solar c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015